
Lycée La Martinière Monplaisir PT

TD16 – Isométries
Exercice 1 FF

Déterminer la nature des transformations de R2 ou de R3 dont les matrices dans la base canonique
sont les suivantes :

A =
1

3

 1 −2 −2
−2 1 −2
2 2 −1

 B =
1

3

 2 2 −1
−1 2 2
2 −1 2

 C =

 0 1 0
0 0 1
−1 0 0


D =

1

4

 −2 −
√
6

√
6√

6 1 3

−
√
6 3 1

 E =
1

3

−2 −2 −1
2 −1 −2
−1 2 −2

 F =
1

25

(
−7 24
24 7

)

Exercice 2 FF

Soit E un espace euclidien de dimension 3, muni d’une base orthonormée B. Déterminer les
matrices dans la base B des endomorphismes suivants :

1. demi-tour d’axe u avec u = (1, 2, 2) ;
2. rotation d’axe dirigé et orienté par u = (1, 1, 1) et d’angle π

3
.

Exercice 3 FF

1. Que peut-on dire d’une matrice carrée réelle à la fois symétrique et orthogonale ?
2. Déterminer la nature et les éléments caractéristiques de l’endomorphisme de l’espace vectoriel

euclidien R3 de matrice dans la base canonique de R3 :

A =
1

7

−2 6 −3
6 3 2
−3 2 6

 .

Exercice 4 FFF

Dans l’espace vectoriel R4 muni de son produit scalaire canonique, on considère l’endomorphisme
f dont la matrice dans la base canonique est :

A =
1

7


−1 −4 4 −4
−4 5 2 −2
4 2 5 2
−4 −2 2 5


1. Sans calculs, dire pourquoi f est diagonalisable dans une base orthonormée.
2. Montrer que f est une isométrie. En déduire les seules valeurs propres possibles pour f .
3. Sans calculer le polynôme caractéristique de f , déterminer à l’aide de la trace l’ordre de

multiplicité des valeurs propres de f . En déduire le polynôme caractéristique de f .
4. Déterminer l’espace propre E1 associé à la valeur propre 1. Donner une base orthonormée de

E1.

5. Montrer que l’espace propre E−1 associé à la valeur propre −1 satisfait E−1 = (E1)
⊥. En

utilisant l’équation caractérisant E1, en déduire un vecteur générateur de E−1.
6. Donner une base orthonormée dans laquelle la matrice de f est diagonale. Donner une inter-

prétation géométrique de f .

Exercice 5 FFF

Soit R3 muni de son produit scalaire habituel. Soit −→w ∈ R3 et f ∈ L(R3) défini par :
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∀−→x ∈ R3, f(−→x ) = a−→x + b〈−→w ,−→x 〉−→w + c(−→w ∧ −→x ).

On suppose −→w de norme 1. Déterminer les triplets (a, b, c) réels pour lesquels f est une rotation.

Exercice 6 FF

Soit A une matrice orthogonale de Mn(R). Montrer que

∣∣∣∣∣∣
n∑

i=1

n∑
j=1

ai,j

∣∣∣∣∣∣ 6 n.

On pourra penser à l’inégalité de Cauchy-Schwarz

Exercice 7 FFF

Soit f un endomorphisme d’un espace euclidien E vérifiant

∀(x, y) ∈ E2, 〈x, y〉 = 0 ⇒ 〈f(x), f(y)〉 = 0

Montrer qu’il existe λ ∈ R+ tel que

∀x ∈ E, ‖f(x)‖ = λ‖x‖

On pourra commencer par montrer que si x et y sont unitaires, alors 〈x+ y, x− y〉 = 0.

Exercice 8 FFF

Soit E un espace vectoriel euclidien et soit f ∈ O(E), montrer que

f2 = −IdE ⇐⇒ [∀x ∈ E , 〈x, f(x)〉 = 0]

Exercice 9 Caractérisation des matrices orthogonales FFF

Dans cet exercice, Mn,1(R) est muni de son produit scalaire canonique 〈X,Y 〉 = X⊤Y . Soit
P ∈ Mn(R).

1. Montrer que si P est orthogonale, alors ∀X ∈ Mn,1(R), ‖PX‖ = ‖X‖.
2. Inversement, on suppose que pour tout X ∈ Mn,1(R), ‖PX‖ = ‖X‖.

(a) Montrer que ∀(X,Y ) ∈ (Mn,1(R))2 , 〈PX,PY 〉 = 〈X,Y 〉.

(b) En déduire que P est orthogonale.

Exercice 10 FFF

Soit (a, b, c) ∈ R3 et M =

a b c
c a b
b c a


On pose σ = ab+ bc+ ca et s = a+ b+ c

1. Montrer que M est orthogonale si et seulement si σ = 0 et s ∈ {−1, 1}.
2. Montrer que M ∈ SO3(R) si et seulement si σ = 0 et s = 1

3. Montrer que M ∈ SO3(R) si et seulement si il existe k ∈
[
0,

4

27

]
tel que a, b et c sont les

racines de X3 −X2 + k

Exercice 11 FFF

Diagonaliser en base orthonormale les matrices suivantes :

A =

 a b b
b a b
b b a

 B =

 0 1 1
1 0 1
1 1 0


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Exercice 12 Décomposition polaire FFFF

Soit A ∈ Mn(R).
1. Montrer qu’il existe une matrice symétrique R telle que R2 = A⊤A.
2. On suppose A inversible. Montrer que la matrice R trouvée à la question précédente est

inversible.
3. Montrer que pour tout A ∈ GLn(R), il existe une matrice symétrique S et une matrice

Q ∈ On(R) telles que A = QS. On pourra raisonner par analyse-synthèse en cherchant une
condition nécessaire sur S.

Exercice 13 Théorème de Mazur-Ulam FFFFF

Soit E un espace euclidien et f une application de E dans E telle que f(0) = 0 et, pour tout
(x, y) ∈ E2 ‖f(x)− f(y)‖ = ‖x− y‖.

On souhaite montrer qu’alors f est une isométrie.

1. Montrer que, pour tout x ∈ E, ‖f(x)‖ = ‖x‖
2. Montrer que, pour tout (x, y) ∈ E2, 〈f(x), f(y)〉 = 〈x, y〉
3. Soit (e1, · · · , en) est une base orthonormée de E, montrer qu’alors (f(e1), · · · , f(en)) est une

base orthonormée de E.
4. En utilisant la base orthonormée (f(e1), · · · , f(en)) montrer que f est linéaire
5. Conclure
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Exercices issus d’oraux

Exercice 14 FFF
(Oral 2019)

Soit M ∈ O4(R) telle que M2 = M − I4 et soit f l’endomorphisme canoniquement associé
1. Calculer M3, en déduire que f est une isométrie positive.
2. Donner les valeurs propres complexes de M avec leur multiplicité
3. Soit X = X1 + iX2 un vecteur propre de M associé à la valeur propre λ avec X1 et X2 deux

matrices de M4,1(R) et soit x1 et x2 les vecteurs de R4 canoniquement associés à X1 et X2

(a) Montrer que P = Vect(x1, x2) est un plan stable par f

(b) En déduire que P⊥ est un plan stable par f

(c) Montrer qu’il existe une base orthonormée de R4 dans laquelle la matrice de f est de la

forme par blocs
(
Rθ 0
0 R−θ

)
ou

(
Rθ 0
0 Rθ

)
où θ est à préciser.

Exercice 15 FFF
(Oral 2017, 2019)

On se place dans R3. Soit r une rotation d’axe D avec r 6= IdR3 et soit s une symétrie orthogonale
par rapport à un plan P

1. On suppose que P et D sont orthogonaux, montrer que r ◦ s = s ◦ r
2. On suppose que r ◦ s = s ◦ r. Que peut-on alors dire de D et P ?

Exercice 16 FF
(Oral 2019)

Soit A =
1

7

 6 3 2
−3 2 6
2 −6 3


1. Montrer que A est une matrice orthogonale
2. Que dire des valeurs propres de A ? Déterminer la nature et les éléments caractéristiques de

l’endomorphisme canoniquement associé à A.

Exercice 17 FF
(Oral 2012)

Soit R =
1

3

 2 2 a
−1 2 b
−2 1 c


1. Déterminer une condition nécessaire et suffisante pour que R soit la matrice d’une rotation.

Trouver alors a, b et c

2. Caractériser cette rotation
3. Déterminer l’image du plan d’équation x+ 2y − z = 0 par la rotation.

Exercice 18 FF
(Oral 2023)

Soit B = (e1, · · · , en) une base orthonormée d’un espace euclidien E et u l’endomorphisme défini
par

∀i ∈ J1, n− 1K, u(ei) = ei+1 et u(en) = e1

1. (a) Écrire la matrice A de u dans B
(b) Montrer que u est une isométrie.
(c) Montrer que u est inversible, déterminer son inverse et son déterminant.

2. On pose, pour k ∈ J0, n− 1K, ωk = exp

(
2ikπ

n

)
et Uk =


1
ωk

ω2
k
...

ωn−1
k

.

(a) Montrer que Uk est un vecteur propre de A.
(b) Montrer que A est diagonalisable dans Mn(C). Donner son polynôme caractéristique.

3. Pour n = 3 déterminer la nature de l’isométrie u.
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Corrigés des exercices

Corrigé de l’exercice 1

• Toutes les matrices sont orthogonales. Aucune de ces matrices n’est symétrique, donc aucune
ne représente une symétrie.

• On détermine d’abord si l’endomorphisme associé est direct ou indirect, pour cela on peut
calculer le déterminant ou bien, pour les matrices 3× 3, déterminer si C1 ∧C2 = C3 (auquel
cas l’isométrie est directe) ou bien si C1 ∧ C2 = −C3 (auquel cas l’isométrie est indirecte).

• On détermine ensuite l’axe de cette transformation en cherchant l’espace propre associé à la
valeur propre 1 pour les rotations et −1 pour les anti-rotations.

• Enfin on détermine l’angle de cette transformation soit en exploitant la trace et un produit
mixte, soit en déterminant une base orthonormée directe adaptée aux éléments géométriques
de la transformation.

Vous pouvez choisir
la méthode de déter-
mination de l’angle
que vous préférez,
les deux méthodes
seront indifférem-
ment utilisées par la
suite.

Méthode

— det(A) = 1. A est donc la matrice d’une rotation.
L’axe de cette rotation est Ker(A− I3). L’axe est donc Vect((1,−1, 0)).
On oriente l’axe à l’aide du vecteur −→u = (1,−1, 0), ce qui oriente le plan de la rotation.

Soit θ l’angle de la rotation. On a alors : Tr(A) = 1+2 cos(θ) =
1

3
, d’où θ = ± arccos

(
−1

3

)
.

Le vecteur −→v = (0, 0, 1) appartient à Vect(−→u )⊥et est de norme 1, le produit mixte
[

1√
2
−→u ,−→v , f(−→v )

]
vaut alors sin(θ)

Le produit mixte
est invariant par
changement de
base orthonormée
directe. La base(

1√
2
−→u ,−→v ,−→u ∧ −→v

)
est orthonormée di-
recte et, en calculant
le produit mixte
dans cette base, on a[

1√
2
−→u ,−→v , f(−→v )

]
=∣∣∣∣∣∣

1 0 0
0 1 cos(θ)
0 0 sin(θ)

∣∣∣∣∣∣.
Ainsi[

1√
2
−→u ,−→v , f(−→v )

]
=

sin(θ)

Produit mixte

On a ainsi sin(θ) =

∣∣∣∣∣∣∣∣∣∣∣

1√
2

0
−2

3
−1√
2

0
−2

3

0 1
1

3

∣∣∣∣∣∣∣∣∣∣∣
=

√
8

3
> 0

L’angle de la rotation est donc θ = arccos

(
−1

3

)
.

— det(B) = 1. B est donc la matrice d’une rotation.
L’axe de cette rotation est Ker(B − I3). L’axe est donc Vect((1, 1, 1)).
On oriente l’axe à l’aide du vecteur −→u = (1, 1, 1), ce qui oriente le plan de la rotation.
Le vecteur −→v = (1,−1, 0) appartient à Vect(−→u )⊥ et on a −→w = −→u ∧ −→v = (1, 1,−2). La

famille
( −→u√

3
,
−→v√
2
,
−→w√
6

)
est une base orthonormée directe et, en notant f l’endomorphisme

canoniquement associé à B et θ l’angle de la rotation, on a

f

( −→v√
2

)
= cos(θ)

−→v√
2
+ sin(θ)

−→w√
6

Ainsi, par expression des coordonnées dans une base orthonormée directe, on a

cos(θ) = 〈f
( −→v√

2

)
,
−→v√
2
〉 = 1

2

sin(θ) = 〈f
( −→v√

2

)
,
−→w√
6
〉 = −

√
3

2

L’angle de la rotation est donc θ = −π

3
.

— det(C) = −1. C est donc la matrice d’une anti-rotation.
L’axe de cette anti-rotation est Ker(C + I3). L’axe est donc Vect((1,−1, 1)).
On oriente l’axe à l’aide du vecteur −→u = (1,−1, 1), ce qui oriente le plan de l’anti-rotation.
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Soit θ l’angle de l’anti-rotation. On a alors : Tr(C) = −1+2 cos(θ) = 0, d’où θ = ± arccos

(
1

2

)
=

±π

3
.

Le vecteur −→v = (1, 1, 0) appartient à Vect(−→u )⊥, on a alors

sin(θ) =

[ −→u√
3
,
−→v√
2
, f

( −→v√
2

)]
= −

√
3

2

L’angle de l’anti-rotation est donc θ = −π

3
.

— det(D) = 1, D est donc la matrice d’une rotation.
L’axe de cette rotation est Ker(D − I3). L’axe est donc Vect((0, 1, 1)).
On oriente l’axe à l’aide du vecteur −→u = (0, 1, 1), ce qui oriente le plan de la rotation.

Soit θ l’angle de la rotation. On a alors : Tr(D) = 1+2 cos(θ) = 0, d’où θ = ± arccos

(
−1

2

)
=

±2π

3
.

Le vecteur −→v = (1, 0, 0) appartient à Vect(−→u )⊥ et est de norme 1, le produit mixte [ 1√
2
−→u ,−→v , f(−→v )]

vaut alors sin(θ)

On a ainsi sin(θ) =

∣∣∣∣∣∣∣∣∣∣∣

0 1
−1

2
1√
2

0

√
6

4
1√
2

0
−
√
6

4

∣∣∣∣∣∣∣∣∣∣∣
=

√
3

2

L’angle de la rotation est donc θ =
2π

3
.

— det(E) = −1. E est donc la matrice d’une anti-rotation.
L’axe de cette anti-rotation est Ker(E + I3). L’axe est donc Vect((1, 0, 1)).
On oriente l’axe à l’aide du vecteur −→u = (1, 0, 1), ce qui oriente le plan de l’anti-rotation.

Soit θ l’angle de l’anti-rotation. On a alors : Tr(E) = −1 + 2 cos(θ) = −5

3
, d’où θ =

± arccos

(
−1

3

)
.

Le vecteur −→v = (0, 1, 0) appartient à Vect(−→u )⊥, on a alors

sin(θ) =

[ −→u√
2
,−→v , f (−→v )

]
=

2
√
2

3

L’angle de l’anti-rotation est donc θ = arccos

(
−1

3

)
.

— det(F ) = −1, F est donc la matrice d’une réflexion d’angle arccos

(
−7

24

)

Corrigé de l’exercice 2

1. On pose
−→
I =

1

3
(1, 2, 2). On a alors Vect(

−→
I )⊥ = {(x, y, z) ∈ R3 , x+ 2y + 2z = 0}.

Le vecteur
−→
J =

1

3
(2,−2, 1) appartient à Vect(

−→
I )⊥ puis on prend

−→
K =

−→
I ∧

−→
J =

1

3
(2, 1,−2).

La base (
−→
I ,

−→
J ,

−→
K) est orthonormée directe et dans cette base, la matrice de l’endomorphisme

est D =

1 0 0
0 −1 0
0 0 −1

.
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On note P la matrice de passage de la base B à la base (
−→
I ,

−→
J ,

−→
K), i.e. P =

1

3

1 2 2
2 −2 1
2 1 −2


La matrice cherchée est

M = PDP−1 = PDP⊤ =
1

9

−7 4 4
4 −1 8
4 8 −1


2. On pose

−→
I =

1√
3
(1, 1, 1). On a alors Vect(

−→
I )⊥ = {(x, y, z) ∈ R3 , x+ y + z = 0}.

Le vecteur
−→
J =

1√
2
(1,−1, 0) appartient à Vect(

−→
I )⊥ puis on prend

−→
K =

−→
I ∧

−→
J =

1√
6
(1, 1,−2).

La base (
−→
I ,

−→
J ,

−→
K) est orthonormée directe et dans cette base, la matrice de l’endomorphisme

est D =


1 0 0

0 cos
(π
3

)
− sin

(π
3

)
0 sin

(π
3

)
cos

(π
3

)
 =


1 0 0

0
1

2
−
√
3

2

0

√
3

2

1

2

.

On note P la matrice de passage de la base B à la base (
−→
I ,

−→
J ,

−→
K), i.e. P =

1√
6


√
2

√
3 1√

2 −
√
3 1√

2 0 −2


La matrice cherchée est

M = PDP−1 = PDP⊤ =
1

3

 2 −1 2
2 2 −1
−1 2 2



Corrigé de l’exercice 3

1. Une matrice réelle à la fois symétrique et orthogonale est la matrice d’une symétrie orthogo-
nale.

2. La matrice A est symétrique réelle et ses colonnes sont de norme 1 et deux à deux orthogo-
nales. A est donc la matrice d’une symétrie orthogonale.
Ses éléments caractéristiques sont Ker(A− I3) et Ker(A+ I3).
Ker(A− I3) est le plan d’équation −3x+ 2y − z = 0.
On en déduit que Ker(A+ I3) = (Ker(A− I3))

⊥ = Vect((−3, 2,−1)).
A est donc la matrice de la symétrie orthogonale par rapport au plan d’équation d’équation
−3x+ 2y − z = 0.

Corrigé de l’exercice 4

1. La matrice de f est symétrique réelle donc diagonalisable dans une base orthonormée.
2. Les colonnes de A sont de norme 1 et deux à deux orthogonales. La matrice de f dans la

base canonique (qui est orthonormée) est orthogonale donc f est une isométrie.
f est une symétrie orthogonale donc ses seules valeurs propres possibles sont 1 et −1.

3. Soit p = dim(Ker(f − Id)). f est diagonalisable avec comme seules valeurs propres 1 et −1
ainsi 4 = dim(Ker(f − Id)) + dim(Ker(f + Id)). On a ainsi dim(Ker(f + Id)) = 4− p.
Alors Tr(A) = p× 1 + (4− p)× (−1) = 2p− 4. Or Tr(A) = 2, d’où p = 3.
Ainsi 1 est une valeur propre de multiplicité 3 et −1 de multiplicité 1.
On en déduit que χf (X) = (X − 1)3(X + 1).
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4. E1 est le plan d’équation 2x+ y − z + t = 0.
((1,−2, 0, 0), (0, 0, 1, 1), (0, 1, 1, 0)) en est une base. En lui appliquant le procédé d’orthonor-

malisation de Gram-Schmidt on en déduit que
(

1√
5
v1,

1√
2
v2,

1√
70

(4, 2, 5,−5)

)
est une base

orthonormée de E1.

5. f est diagonalisable et admet comme seules valeurs propres 1 et −1.
E1 et E−1 sont donc supplémentaires dans R4.
Soit x ∈ E1 et y ∈ E−1. 〈f(x), f(y)〉 = 〈x, y〉 car f est une isométrie.
Or 〈f(x), f(y)〉 = 〈x,−y〉 = −〈x, y〉. Donc 〈x, y〉 = −〈x, y〉, d’où x et y sont orthogonaux.
Donc E1 et E−1 sont orthogonaux.
Ainsi E−1 = (E1)

⊥.
De plus (x, y, z, t) ∈ E1 ⇔ 2x+ y − z + t = 0. Posons u = (2, 1,−1, 1).
Alors v = (x, y, z, t) ∈ E1 ⇔ 〈u, v〉 = 0. Ainsi E−1 = (E1)

⊥ = Vect(u).

6. La famille
(

1√
5
v1,

1√
2
v2,

1√
70

(4, 2, 5,−5),
1√
7
(2, 1,−1, 1)

)
obtenue en concaténant des bases

orthonormées de E1 et E−1 est une base orthonormée de R4 dans laquelle la matrice de f
est diagonale.
f est la symétrie orthogonale par rapport à E1.

Corrigé de l’exercice 5
Quel que soit (a, b, c) ∈ R3, f est un endomorphisme de R3.

Soit
−→
I et

−→
J deux vecteurs de R3 tels que (−→w ,

−→
I ,

−→
J ) soit une base orthonormée directe.

Alors
f(−→w ) = (a+ b)−→w , f(

−→
I ) = a

−→
I + c

−→
J , f(

−→
J ) = a

−→
J − c

−→
I

−→w est ainsi un vecteur propre de f et −→w⊥ = Vect(
−→
I ,

−→
J ) est un plan stable par f .

La matrice de f dans la base (−→w ,
−→
I ,

−→
J ) est alors

a+ b 0 0
0 a −c
0 c a


f est une rotation si et seulement si cette matrice précédente est celle d’une rotation.

— Si f est une rotation, alors a+ b est une valeur propre de f et det(f) = (a+ b)(a2 + c2) > 0.
Donc a+ b = 1 et −→w dirige l’axe de la rotation.
La restriction de f à −→w⊥ est alors une rotation plane donc il existe θ tel que a = cos(θ) et
c = sin(θ), d’où b = 1− cos(θ).

— Réciproquement, s’il existe θ tel que a = cos(θ) et c = sin(θ) et b = 1 − cos(θ), la matrice
trouvée est celle d’une rotation. Donc f est une rotation.

Finalement f est une rotation si et seulement s’il existe θ tel que a = cos(θ) et c = sin(θ) et
b = 1− cos(θ).

Corrigé de l’exercice 6
Soit A une matrice orthogonale de Mn(R). Soit f l’endomorphisme canoniquement associé à A, f
est une isométrie.

Soit −→u = (1, 1, .., 1) et U le vecteur colonne associé à u dans la base canonique. Soit 〈�, �〉 le
produit scalaire canonique de Rn.

On a alors
∑
i

∑
j

ai,j = U⊤AU = 〈u, f(u)〉.

Par l’inégalité de Cauchy-Schwarz 〈u, f(u)〉 6 ‖u‖‖f(u)‖
Or ‖f(u)‖ = ‖u‖, car f est une isométrie et ‖u‖ =

√
n.

D’où

∣∣∣∣∣∣
∑
i

∑
j

ai,j

∣∣∣∣∣∣ 6 n.
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Corrigé de l’exercice 7
Soit x et y deux vecteurs unitaires, on a alors

〈x+ y, x− y〉 = 〈x, x− y〉+ 〈y, x− y〉
= 〈x, x〉+ 〈y, x〉 − 〈x, y〉 − 〈y, y〉
= ‖x‖2 − ‖y‖2

= 1− 1

= 0

On a donc

∀(x, y) ∈ E2, ‖x‖ = ‖y‖ = 1 ⇒ 〈f(x+ y), f(x− y)〉 = 0

C’est-à-dire

∀(x, y) ∈ E2, ‖x‖ = ‖y‖ = 1 ⇒ 〈f(x) + f(y), f(x)− f(y)〉 = 0

ou encore, en développant les produit scalaire

∀(x, y) ∈ E2, ‖x‖ = ‖y‖ = 1 ⇒ ‖f(x)‖ = ‖f(y)‖

Soit e un vecteur unitaire de E et λ = ‖f(e)‖ > 0. Soit u ∈ E non-nul, on a alors
∥∥∥∥ u

‖u‖

∥∥∥∥ = 1,

ainsi, d’après la propriété précédente∥∥∥∥f (
u

‖u‖

)∥∥∥∥ = ‖f(e)‖ = λ

Or
∥∥∥∥f (

u

‖u‖

)∥∥∥∥ =
1

‖x‖
‖f(x)‖ Ainsi

∀x ∈ E \ {0}, ‖f(x)‖ = λ‖x‖

Cette relation est clairement aussi vraie pour x = 0 ainsi

∀x ∈ E, ‖f(x)‖ = λ‖x‖

Corrigé de l’exercice 8

On travaille par double implication :

— Supposons que f2 = −IdE

Alors

〈x, f(x)〉 = −〈f2(x), f(x)〉 car f2 = − IdE

= −〈f(x), x〉 car f est une isométrie

Ainsi 〈x, f(x)〉 = 0.
— Supposons que, pour tout x ∈ E, 〈x, f(x)〉 = 0

Soit (x, y) ∈ E2, alors on a

0 = 〈f(x, y), x+ y〉
= 〈f(x), x〉+ 〈f(x), y〉+ 〈f(y), x〉+ 〈f(y), y〉
= 〈f(x), y〉+ 〈f(y), x〉
= 〈f(x), y〉+ 〈f2(y), f(x)〉
= 〈f(x), f2(y) + y〉

Ainsi, pour tout couple (x, y) ∈ E2, on a 〈f(x), y + f2(y)〉 = 0, ainsi, pour tout y ∈ E,
y + f2(y) ∈ Im(f)⊥

f est une isométrie et donc Im(f) = E, ainsi pour tout y ∈ E, y+f2(y) = 0, i.e. f2 = − IdE .
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On a montré les deux implications, on a donc bien

f2 = −IdE ⇐⇒ [∀x ∈ E , 〈x, f(x)〉 = 0]

Corrigé de l’exercice 9

1. Soit X ∈ Mn,1(R). Alors on a ‖PX‖ = (PX)
⊤
PX = X⊤ PX⊤P︸ ︷︷ ︸

=In

X = X⊤X = ‖X‖2.

Et puisqu’une norme est toujours positive, on en déduit que ‖PX‖ = ‖X‖.
2. Soient X et Y ∈ Mn,1(R). Nous savons que C’est l’identité de

polarisation

‖P (X + Y )‖2 = ‖PX‖2 + 2〈PX,PY 〉+ ‖PY ‖2 = ‖X‖2 + 2〈PX,PY 〉+ ‖Y ‖2.

D’autre part, on a également

‖X + Y ‖2 = ‖X‖2 + 2〈X,Y 〉+ ‖Y ‖2

et donc ‖P (X + Y )‖2 = ‖X + Y ‖2 ⇒ 〈PX,PY 〉 = 〈X,Y 〉.
En particulier, si (X1, . . . , Xn) sont les vecteurs de la base canonique de Mn,1(R), alors pour

tous (i, j) ∈ J1, nK2, 〈Xi, Xj〉 =

{
0 si i 6= j

1 sinon
et donc 〈PXi, PXj〉 =

{
0 si i 6= j

1 sinon
.

Autrement dit (PX1, . . . , PXn) est une famille orthonormée de Mn,1(R), de cardinal n, donc
Toute famille
orthonormée est libre.

c’est une base orthonormée B de Mn,1(R).
Et alors P est la matrice de passage de B à la base canonique : elle est alors orthogonale car
matrice de passage entre deux bases orthonormées.

Autre méthode : montrons que A = P⊤P − In est la matrice nulle, ce qui prouvera que
P⊤P = In.
Pour tout X,Y ∈ Mn,1(R), on a X⊤AY = X⊤P⊤PY −X⊤Y = 〈PX,PY 〉 − 〈PX,PY 〉.
En particulier, pour X = AY , il vient (AY )

⊤
AY = 0 ⇔ ‖AY ‖2 = 0.

Et donc, pour tout Y ∈ Mn,1(R), ‖AY ‖ = 0 ⇒ ∀Y ∈ Mn,1(R), AY = 0.
Or, comme AX = 0 pour tout X ∈ Mn,1(R), alors A = 0 et donc P est orthogonale.

Corrigé de l’exercice 10

1. On a

MM⊤ =

a2 + b2 + c2 bc+ ac+ ab bc+ ac+ ab
bc+ ac+ ab a2 + b2 + c2 bc+ ac+ ab
bc+ ac+ ab bc+ ac+ ab a2 + b2 + c2

 =

s2 − 2σ σ σ
σ s2 − 2σ σ
σ σ s2 − 2σ


Ainsi MM⊤ = I3 si et seulement si σ = 0 et s2 = 1.
On a donc bien M ∈ O3(R) si et seulement si σ = 0 et s ∈ {−1, 1}.
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2. On a de plus

det(M) =

∣∣∣∣∣∣
a b c
c a b
b c a

∣∣∣∣∣∣
=

∣∣∣∣∣∣
a+ b+ c b c
c+ a+ b a b
b+ c+ a c a

∣∣∣∣∣∣
= (a+ b+ c)

∣∣∣∣∣∣
1 b c
1 a b
1 c a

∣∣∣∣∣∣
= (a+ b+ c)

∣∣∣∣∣∣
1 0 0
1 a− b b− c
1 c− b a− c

∣∣∣∣∣∣
= (a+ b+ c) ((a− b)(a− c)− (c− b)(b− c))

= (a+ b+ c)
(
a2 + b2 + c2 − ab− ac− bc

)
= s(s2 − 3σ)

Ainsi, si σ = 0 et s2 = 1 alors det(M) = s et donc M ∈ SO3(R) si et seulement si σ = 0 et
s = 1

3. On a
(X − a)(X − b)(X − c) = X3 − sX2 + σX − abc

— Supposons qu’il existe k ∈
[
0,

4

27

]
tel que a, b et c sont les racines de X3 − X2 + k.

Alors X3 −X2 + k = (X − a)(X − b)(X − c).
Par unicité de l’écriture développée d’un polynôme on a donc s = 1 et σ = 0, d’où
M ∈ SO3(R)

— Réciproquement, supposons que M ∈ SO3(R), alors a, b et c sont les racines de (X −
a)(X − b)(X − c) = X3 −X2 − abc.

Il ne reste plus qu’à montrer que −abc ∈
[
0,

4

27

]
. On va pour cela exploiter le fait que

a, b et c sont des réels
Considérons la fonction f : t 7→ t3 − t2 + k avec k réel et cherchons à quelle condition
cette fonction s’annule exactement trois fois sur R.
Pour t ∈ R, on a f ′(t) = 3t2 − 2t = t(3t − 2), on en déduit le tableau de variations
suivant

t

f ′(t)

f

−∞ 0
2

3
+∞

+ 0 − 0 +

−∞−∞

kk

k − 4

27
k − 4

27

+∞+∞

Pour que f s’annule exactement trois fois sur R il faut et il suffit que k > 0 et k− 4

27
6 0,

i.e. k ∈
[
0,

4

27

]
.

C’est le cas ici, on a donc −abc ∈
[
0,

4

27

]
. Ainsi il existe bien k ∈

[
0,

4

27

]
tel que a, b

et c sont les racines de X3 −X2 + k.

11 Bastien Marmeth



Lycée La Martinière Monplaisir PT

Corrigé de l’exercice 11
Les matrices A et B sont symétriques réelles donc diagonalisables en base orthonormée.

A =

a b b
b a b
b b a

.

On a alors

χA =

∣∣∣∣∣∣
X − a −b −b
−b X − a −b
−b −b X − a

∣∣∣∣∣∣
=

∣∣∣∣∣∣
X − a− 2b −b −b
X − a− 2b X − a −b
X − a− 2b −b X − a

∣∣∣∣∣∣
= (X − a− 2b)

∣∣∣∣∣∣
1 −b −b
1 X − a −b
1 −b X − a

∣∣∣∣∣∣
= (X − a− 2b)

∣∣∣∣∣∣
1 0 0
1 X − a+ b 0
1 0 X − a+ b

∣∣∣∣∣∣
= (X − a− 2b)(X − a+ b)2

1
1
1

 est vecteur propre associé à la valeur propre a + 2b. Le sous-espace propre associé à la

valeur propre a− b est le plan


x
y
z

 ∈ M3,1(R) , x+ y + z = 0

.

Les espaces propres
d’une matrice symé-
trique réelle sont
deux-à-deux or-
thogonaux. Ici on
a donc Ea−b(A) =
Ea+2b(A)⊥.

Espaces propres

Soit
−→
I =

1√
3

1
1
1

,
−→
J =

1√
2

 1
−1
0

 et
−→
K =

−→
I ∧

−→
J =

1√
6

 1
1
−2

.

Soit P la matrice de passage de la base canonique à (
−→
I ,

−→
J ,

−→
K), i.e. P =

1√
6


√
2

√
3 1√

2 −
√
3 1√

2 0 −2


et D =

a+ 2b 0 0
0 a− b 0
0 0 a− b

.

On a alors A = PDP⊤.
La matrice B est simplement le cas particulier où a = 0 et b = 1, ainsi B = PDP⊤, où

P =
1√
6


√
2

√
3 1√

2 −
√
3 1√

2 0 −2

 et D =

2 0 0
0 −1 0
0 0 −1

.

Corrigé de l’exercice 12

1. On a (A⊤A)
⊤
= A⊤(A⊤)

⊤
= A⊤A. La matrice A⊤A est donc symétrique réelle.

Elle est ainsi diagonalisable en base orthonormée.
Soit λ une valeur propre de A⊤A et X un vecteur propre associé. On note 〈�, �〉 le produit
scalaire canonique sur Mn(R).
On a alors ‖X‖2 = X⊤X et X⊤A⊤AX = X⊤λX = λX⊤X.

Or X⊤A⊤AX = (AX)
⊤
AX = ‖AX‖2. Donc λ =

‖AX‖2

‖X‖2
> 0.

Notons λ1, · · · , λn les valeurs propres de A⊤A, qui sont toutes réelles positives.
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Il existe une matrice P orthogonale telle que A⊤A = PDP−1, avec D =


λ1 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 λn



Posons D′ =


√
λ1 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0

0 · · · 0
√
λn

.

On a D = D′2, donc A⊤A = PD′2P−1 = PD′P−1PD′P−1 = R2 avec R = PD′P−1.

De plus R⊤ = (PD′P−1)
⊤

= P−1⊤D′⊤P⊤ = PD′⊤P⊤ = PD′P−1 = R (on a TP = P−1

car P est orthogonale).
Donc R est symétrique.
Ainsi, il existe une matrice symétrique R telle que R2 = TAA.

2. On suppose A inversible. On a alors det(TAA) = det(A) det(A⊤) = det(A)2 > 0.
Or TAA = R2, donc det(R)2 = det(A)2 > 0. Donc det(R) 6= 0. La matrice R trouvée en 1.
est ainsi inversible.

3. On va procéder par analyse-synthèse :
Analyse :
Soit A ∈ GLn(R). On suppose qu’il existe une matrice symétrique S et une matrice Q ∈
On(R) telles que A = QS.
On a alors A⊤ = S⊤Q⊤ = SQ⊤, d’où A⊤A = S2.
Synthèse
Soit A inversible, d’après les questions 1. et 2. il existe une matrice S symétrique, inversible
telle que A⊤A = S2.
S est inversible. Posons Q = AS−1. On a alors

Q⊤Q = (S−1)
⊤
A⊤AS−1 = (S⊤)−1S2S−1 = S−1S = In

Ainsi Q est orthogonale.
Finalement, si A est inversible, il existe une matrice symétrique S et une matrice Q ∈ On(R)
telles que A = QS.

Corrigé de l’exercice 13

1. Soit x ∈ E, on a
‖f(x)‖ = ‖f(x)− f(0)‖ = ‖x− 0‖ = ‖x‖

2. Soit (x, y) ∈ E2, on a alors, d’après les identités de polarisation

〈f(x), f(y)〉 = −‖f(x)− f(y)‖2 − ‖f(x)‖2 − ‖f(y)‖2

2

= −‖x− y‖2 − ‖x‖2 − ‖y‖2

2
= 〈x, y〉

3. D’après la question 1. on a, pour (i, j) ∈ J1, nK, ‖f(ei)‖ = ‖ei‖ = 1 et d’après la question 2.,
〈f(ei), f(ej)〉 = 〈ei, ej〉 = δi,j . Ainsi la famille (f(e1), · · · , f(en)) est une base orthonormée
de E.

4. Soit x ∈ E, on a alors

f(x) =

n∑
i=1

〈f(x), f(ei)〉f(ei) =
n∑

i=1

〈x, ei〉f(ei)
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Ainsi f est l’application x 7→
n∑

i=1

〈x, ei〉f(ei) qui est linéaire par linéarité à gauche du produit

scalaire.
5. On a montré que, si est f une application de E dans E telle que f(0) = 0 et, pour tout

(x, y) ∈ E2 ‖f(x) − f(y)‖ = ‖x − y‖ alors f est linéaire et vérifie que pour tout x ∈ E
‖f(x)‖ = ‖x‖, f est donc une isométrie.

Corrigé de l’exercice 14

1. On a
M3 = MM2 = M2 −M = M − I4 −M = −I4

Ainsi det(M)3 = det(M3) = det(−I4) = (−1)4 = 1. D’où det(M) = 1, f est ainsi une
isométrie positive.

2. Soit λ une valeur propre complexe de M et X un vecteur propre associé. On a alors M2X =
λ2X et M2X = (M − I4)X = MX −X = (λ− 1)X.
Puisque X 6= 04,1 on a ainsi λ2 = λ− 1, d’où λ ∈ {eiπ

3 , e−iπ
3 }.

La polynôme caractéristique de f est alors de la forme χf =
(
X − ei

π
3

)a (
X − e−iπ

3

)b avec
a et b deux entiers tels que a + b = 4. Or χf est un polynôme à coefficients réels donc
χf = χf =

(
X − e−iπ

3

)a (
X − ei

π
3

)b. On en déduit que a = b et donc a = b = 2.

Plus généralement
cet argument montre
que, si P est un po-
lynôme à coefficients
réels et λ est une
racine de P de mul-
tiplicité m alors λ
est également une
racine de P de mul-
tiplicité m.

Multiplicité

Les valeurs propres complexes de f sont ainsi eiπ
3 et e−iπ

3 qui sont toutes les deux de multi-
plicité 2.

3. Soit X = X1 + iX2 un vecteur propre de M associé à la valeur propre λ avec X1 et X2

vecteurs de R4.
(a) On a MX = λX, i.e. M(X1 + iX2) = λ(X1 + iX2). En passant au conjugué on obtient

MX = λX, c’est-à-dire M(X1 − iX2) = λ(X1 − iX2).
Alors

MX1 =
1

2
M(X +X) =

λ+ λ

2
X1 +

iλ− iλ

2
X2 ∈ Vect(X1, X2)

Et
MX2 =

1

2
M(X −X) =

λ− λ

2
X1 +

iλ+ iλ

2
X2 ∈ Vect(X1, X2)

On a bien f(x1) ∈ P et f(x2) ∈ P . P est donc stable par f

(b) P est stable par f et f est une isométrie, ainsi P⊥ est stable par f .
(c) P et P⊥ sont des espaces vectoriels stables par f .

Notons f1 la restriction de f à P . f1 est encore une isométrie et f2
1 = f1 − IdP , ainsi

f3
1 = − IdP et donc det(f1)

3 = (−1)2 = 1.
f1 est ainsi une isométrie positive d’un espace de dimension 2, sa matrice dans n’importe

quelle base orthonormée de P est alors de la forme Rθ =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
où θ ∈ R

De même f2 la restriction de f à P⊥ a pour matrice dans n’importe quelle base ortho-

normée de P⊥ une matrice la forme Rϕ =

(
cos(ϕ) − sin(ϕ)
sin(ϕ) cos(ϕ)

)
.

Ainsi, dans une base orthonormée adaptée à la somme directe orthogonale P ⊕ P⊥ la

matrice de f est de la forme
(
Rθ 0
0 Rϕ

)
.

On en déduit que le spectre de M est alors le spectre de la matrice
(
Rθ 0
0 Rϕ

)
, i.e.

Sp(M) = {eiθ, e−iθ, eiϕ, e−iϕ}.

Ainsi ϕ = θ ou ϕ = −θ et θ ∈ {π
3
,−π

3
}.
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Corrigé de l’exercice 15

1. On suppose que P et D sont orthogonaux, de plus dim(P ) = 2 et dim(D) = 1, ainsi R3 =
P ⊕D.
Soit x ∈ R3, il existe (xP , xD) ∈ P ×D tel que x = xP + xD.
D est stable par r donc, puisque r est une isométrie P = D⊥ est stable par r, on a ainsi
r(xD) = xD et r(xP ) ∈ P .
On sait de plus que, si y ∈ P alors s(y) = y et si y ∈ P⊥ alors s(y) = −y.
Ainsi

s ◦ r(x) = s(r(xD)) + s(r(xP )) = s(xD) + r(xP ) = −xD + r(xP )

Et
r ◦ s(x) = r(s(xD)) + r(s(xP )) = r(−xD) + r(xP ) = −xD + r(xP )

On a donc bien r ◦ s(x) = s ◦ r(x), ce pour tout x ∈ R3, d’où r ◦ s = s ◦ r.
2. On suppose que r ◦ s = s ◦ r.

Soit v un vecteur directeur de P⊥, on a alors s(v) = −v.
Ainsi r ◦ s(v) = r(−v) = −r(v) = s ◦ r(v). On en déduit que r(u) ∈ E−1(s).
Si s n’est pas − IdR3 alors E1(s) = Vect(v) et donc r(v) ∈ Vect(v).
Puisque s est une isométrie on a alors ‖r(v)‖ = ‖v‖, ainsi r(v) = ±v

— Si r(v) = v alors v dirige D et on a donc D = P⊥

— si r(v) = −v alors −1 ∈ Sp(r). r est alors une rotation d’angle π, i.e. une symétrie
orthogonale d’axe D. On a alors P⊥ ⊂ D⊥, d’où D ⊂ P .
Réciproquement supposons que r est une symétrie orthogonale d’axe D, s une symétrie
orthogonale d’axe P avec D ⊂ D. Soit u un vecteur directeur unitaire de D, v tel que
(u, v) soit une base orthonormée de P et w un vecteur directeur unitaire de P⊥. Alors,
si on note B = (u, v, w) on a

MatB(r) =

1 0 0
0 −1 0
0 0− 1

 et MatB(s) =

1 0 0
0 1 0
0 0− 1


Il est alors aisé de prouver que r et s commutent.

Finalement on a D = P⊥ ou bien r est une symétrie orthogonale d’axe D avec D ⊂ P .

Corrigé de l’exercice 16

1. On a AA⊤ = I3, A est donc une matrice orthogonale.
2. A est une matrice orthogonale donc ses valeurs propres sont toutes de module 1, en particulier

ses seules valeurs propres réelles possibles sont 1 et −1.
On a det(A) = 1, A est donc la matrice d’une rotation.
L’axe de cette rotation est Ker(A− I3). L’axe est donc Vect((2, 0, 1)).
On oriente l’axe à l’aide du vecteur −→u = (2, 0, 1), ce qui oriente le plan de la rotation.

Soit θ l’angle de la rotation. On a alors : Tr(A) = 1+ 2 cos(θ) =
11

7
, d’où θ = ± arccos

(
2

7

)
.

Le vecteur −→v = (0, 1, 0) appartient à Vect(−→u )⊥ et est de norme 1, le produit mixte
[

1√
5
−→u ,−→v , f(−→v )

]
vaut alors sin(θ)

On a ainsi sin(θ) =

∣∣∣∣∣∣∣∣∣∣∣

2√
5

0
3

7

0 1
2

7
1√
5

0
−6

7

∣∣∣∣∣∣∣∣∣∣∣
=

−3
√
5

7
< 0
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L’angle de la rotation est donc θ = − arccos

(
2

7

)
.

Corrigé de l’exercice 17

1. R est la matrice d’une rotation si et seulement si l’image de la base canonique de M3,1(R)

est une base orthonormée directe de M3,1(R), i.e. si et seulement

a
b
c

 =


2

3−1

3−2

3

 ∧


2

3
2

3
1

3

.

Ainsi R est la matrice d’une rotation si et seulement si a = 1, b = −2 et c = 2.
2. On reprend la méthode des exercices 1 et 16., on obtient que R est la matrice de la rotation

d’axe dirigé et orienté par −→u = (1, 1,−1) et d’angle θ =
π

3
3. Notons r la rotation associé à R dans la base canonique. Le plan d’équation x+ 2y − z = 0

est dirigé par −→a = (1, 0, 1) et
−→
b = (0, 1, 2). Son image est alors Vect(r(−→a ), r(

−→
b )).

Or r(−→a ) = (1,−1, 0) et r(
−→
b ) =

(
4

3
,−2

3
,
5

3

)
.

Ainsi l’image du plan d’équation x+ 2y − z = 0 par r est le plan Vect((1,−1, 0), (4,−2, 5)).
Par ailleurs Vect((1,−1, 0), (4,−2, 5)⊥ = Vect(5, 5, 2), ainsi le plan Vect((1,−1, 0), (4,−2, 5))
est le plan d’équation 5x+ 5y + 2z = 0.

Corrigé de l’exercice 18

1. (a) On a A =



0 0 · · · · · · 0 1
1 0 · · · · · · · · · 0

0
. . .

. . .
...

...
. . .

. . .
. . .

...
...

. . .
. . . 0

...
0 · · · · · · 0 1 0


(b) u envoie la base orthonormée B = (e1, · · · , en) sur la famille (e2, · · · , en, e1) qui est

également une base orthonormée. Ainsi u est une isométrie.
(c) Puisque u est une isométrie, elle est inversible. De plus, comme B est orthonormée, A

est une matrice orthogonale, d’où

MatB(u
−1) = A−1 = AT

Ainsi u−1 est l’application linéaire définie par

∀i ∈ J2, nK, u(ei) = ei−1 et u(e1) = en

Enfin on a det(u) = det(A) = (−1)n+1 det(In−1) = (−1)n+1 par développement par
rapport à la dernière colonne.

2. On pose, pour k ∈ J0, n− 1K, ωk = exp

(
2ikπ

n

)
et Uk =


1
ωk

ω2
k
...

ωn−1
k

.

(a) Remarquons que les complexes ωk sont les racines n de l’unité et qu’à ce titre on a
ωn
k = 1.
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On a alors

AUk =


ωn−1
k

1
ωk

...
ωn−2
k

 =



1

ωkωk

ωk
ω2
k

ωk
...

ωn−1
k

ωk


=

1

ωk
Uk = ωn−kUk

Ainsi Uk est un vecteur propre de A pour la valeur propre ωn−k.
(b) De la question précédente on en déduit que {ωn−k , k ∈ J0, n− 1K} ⊂ Sp(A).

C’est-à-dire {1, ωk, · · · , ωk−1} ⊂ Sp(A). Comme A est une matrice de taille n elle admet
au maximum n valeurs propres. Ainsi Sp(A) = {1, ω1, · · · , ωn−1}.
A est alors une matrice carrée de taille n qui admet n valeurs propres distinctes, elle est
donc diagonalisable.
De plus

χA =

n−1∏
k=0

(X − ωk) = Xn − 1

3. Considérons que la base B est directe.

Pour n = 3 on a A =

0 0 1
1 0 0
0 1 0

.

D’après la question 1.(c), det(A) = 1, A est donc une isométrie positive donc une rotation.

On a E1(A) = Vect

1
1
1

.

De plus cos(θ) =
Tr(A)− 1

2
= −1

2

Soit U =
1√
3

1
1
1

 et V =
1√
2

 1
−1
0


On a alors AV =

1√
2

 0
1
−1

 puis

sin(θ) = det
B
(U, V,AV ) =

1

2
√
3

∣∣∣∣∣∣
1 1 0
1 −1 1
1 0 −1

∣∣∣∣∣∣ = 3

2
√
3
=

√
3

2

Ainsi, u est la rotation d’axe dirigé et orienté par le vecteur de coordonnées (1, 1, 1) et d’angle
2π

3
.
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