Lycée La Martiniére Monplaisir PT

TD1¢ — Isométries

Exercice 1

Déterminer la nature des transformations de R? ou de R? dont les matrices dans la base canonique
sont les suivantes :

L[ 2 2 (2 2 -1 0 1 0
A=-1-2 1 -2 B:g -1 2 2 c=[0 01
2 2 -1 2 -1 2 -1 0 0
L2 -6 V6 2 -2 -1 Y
D=-1| V6 1 3 E=-2 -1 -2 F=—
4 B3 \24 7
-6 3 1 -1 2 -2

Exercice 2

Soit E un espace euclidien de dimension 3, muni d’une base orthonormée B. Déterminer les
matrices dans la base B des endomorphismes suivants :

1. demi-tour d’axe u avec u = (1,2,2);

T
2. rotation d’axe dirigé et orienté par u = (1,1,1) et d’angle 3

Exercice 3

1. Que peut-on dire d’une matrice carrée réelle a la fois symétrique et orthogonale ?
2. Déterminer la nature et les éléments caractéristiques de I’endomorphisme de I’espace vectoriel
euclidien R? de matrice dans la base canonique de R? :

1 -2 6 -3
-3 2 6

Exercice 4

Dans I’espace vectoriel R* muni de son produit scalaire canonique, on considére ’endomorphisme
f dont la matrice dans la base canonique est :

-1 -4 4 —4
1[-4 5 2 -2
A‘?4 2 5 2
-4 -2 2 5

1. Sans calculs, dire pourquoi f est diagonalisable dans une base orthonormée.

2. Montrer que f est une isométrie. En déduire les seules valeurs propres possibles pour f.

3. Sans calculer le polynéme caractéristique de f, déterminer a ’aide de la trace l'ordre de
multiplicité des valeurs propres de f. En déduire le polynéme caractéristique de f.

4. Déterminer I’espace propre F; associé a la valeur propre 1. Donner une base orthonormée de
El.

5. Montrer que Pespace propre E_; associé & la valeur propre —1 satisfait £_; = (E;)*. En
utilisant 1’équation caractérisant E1, en déduire un vecteur générateur de F_;.

6. Donner une base orthonormée dans laquelle la matrice de f est diagonale. Donner une inter-
prétation géométrique de f.

Exercice 5

Soit R® muni de son produit scalaire habituel. Soit @ € R® et f € L(R3) défini par :
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VZ eR®, f(T) =a@ +b(W, T)T + (T N TD).

On suppose % de norme 1. Déterminer les triplets (a, b, ¢) réels pour lesquels f est une rotation.

Exercice 6

n n
Soit A une matrice orthogonale de M,,(R). Montrer que Z Z a; ;| < n.
i=1 j=1

On pourra penser da l’inégalité de Cauchy-Schwarz

Exercice 7

Soit f un endomorphisme d’un espace euclidien F vérifiant
V(z,y) € B2, (z,y) =0 = (f(2),f(y)) =0
Montrer qu’il existe A € R tel que
VeeE,  |[[f(x)] = Al

On pourra commencer par montrer que st z et y sont unitaires, alors (x +y,z —y) = 0.

Exercice 8

Soit E un espace vectoriel euclidien et soit f € O(E), montrer que

fP=-Idg <= NVzc€E, (z, f(z)) =0]

Exercice 9 Caractérisation des matrices orthogonales

Dans cet exercice, .#, 1(R) est muni de son produit scalaire canonique (X,Y) = X 'Y. Soit

P e #,R).
1. Montrer que si P est orthogonale, alors VX € ., 1(R), ||[PX] = || X].
2. Inversement, on suppose que pour tout X € ., 1(R), |PX| = || X].

(a) Montrer que V(X,Y) € (4, 1(R))?, (PX,PY) = (X,Y).

(b) En déduire que P est orthogonale.
Exercice 10

a b c
Soit (a,b,c) ER*et M= [c a b
b ¢ a

Onposec =ab+bc+caets=a+b+c
1. Montrer que M est orthogonale si et seulement si 0 =0 et s € {—1,1}.
2. Montrer que M € SO3(R) si et seulement si o =0et s =1

4
3. Montrer que M € SO3(R) si et seulement si il existe k € {0, 27} tel que a, b et ¢ sont les

racines de X% — X2 + k

Exercice 11

Diagonaliser en base orthonormale les matrices suivantes :

Il
= o
— O
O = =

b b
a b B
b a

b
I
S
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Exercice 12 Décomposition polaire

Soit A € M,,(R).

1.
2.

3.

Montrer qu’il existe une matrice symétrique R telle que R? = AT A.

On suppose A inversible. Montrer que la matrice R trouvée & la question précédente est
inversible.

Montrer que pour tout A € GL,(R), il existe une matrice symétrique S et une matrice
Q € O, (R) telles que A = QS. On pourra raisonner par analyse-synthése en cherchant une
condition nécessaire sur S.

Exercice 13 Théoréme de Mazur-Ulam

Soit E un espace euclidien et f une application de E dans E telle que f(0) = 0 et, pour tout
(z,y) € E® | f(x) = F)] = llz —yl.

On souhaite montrer qu’alors f est une isométrie.

1.

Montrer que, pour tout z € E, ||f(x)| = |||
. Montrer que, pour tout (z,y) € E?, (f(z), f(v)) = (z,%)
Soit (e1, -+ ,ep) est une base orthonormée de E, montrer qu’alors (f(ey1), -, f(en)) est une
base orthonormée de E.
En utilisant la base orthonormée (f(e1),--- , f(e,)) montrer que f est linéaire
Conclure
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Exercices issus d’oraux

Exercice 14
(Oral 2019)

Soit M € O4(R) telle que M? = M — I, et soit f ’endomorphisme canoniquement associé

1. Calculer M3, en déduire que f est une isométrie positive.

2. Donner les valeurs propres complexes de M avec leur multiplicité

3. Soit X = X7 +iX5 un vecteur propre de M associé a la valeur propre A avec X7 et Xo deux

matrices de My 1(R) et soit z1 et x2 les vecteurs de R* canoniquement associés a X; et Xs

(a) Montrer que P = Vect(z1,x2) est un plan stable par f
(b) En déduire que Pt est un plan stable par f
(¢) Montrer qu'il existe une base orthonormée de R* dans laquelle la matrice de f est de la

Ry O Ry O N N
forme par blocs < 0 R_9> ou ( 0 Rg) ou @ est a préciser.

Exercice 15
(Oral 2017, 2019)

On se place dans R*. Soit 7 une rotation d’axe D avec r # Idgs et soit s une symétrie orthogonale
par rapport a un plan P

1. On suppose que P et D sont orthogonaux, montrer que ros=sor

2. On suppose que 7 o s = s o r. Que peut-on alors dire de D et P?

Exercice 16
(Oral 2019)

1 6 3 2
Soit A = 7 -3 2 6
2 -6 3

1. Montrer que A est une matrice orthogonale
2. Que dire des valeurs propres de A? Déterminer la nature et les éléments caractéristiques de
I’endomorphisme canoniquement associé a A.

Exercice 17
(Oral 2012)

1 2 2 a
Soit R = 3 -1 2 b
-2 1 c

1. Déterminer une condition nécessaire et suffisante pour que R soit la matrice d’une rotation.
Trouver alors a, b et ¢

2. Caractériser cette rotation

3. Déterminer I'image du plan d’équation = + 2y — z = 0 par la rotation.

Exercice 18
(Oral 2025)

Soit B = (e1,-- - ,e,) une base orthonormée d’un espace euclidien F et u ’endomorphisme défini
par
Vie[l,n—1], wu(e;))=eir1 et ule,) =er
1. (a) Ecrire la matrice A de u dans B
(b) Montrer que u est une isométrie.
(¢) Montrer que u est inversible, déterminer son inverse et son déterminant.
1
k o
2tk 2
2. On pose, pour k € [0,n — 1], wx, = exp () et Uy = | Yk
n .
—1
o
(a) Montrer que Uy, est un vecteur propre de A.
(b) Montrer que A est diagonalisable dans M,,(C). Donner son polynéme caractéristique.

3. Pour n = 3 déterminer la nature de I'isométrie w.
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Corrigés des exercices

Corrigé de I’exercice 1

Toutes les matrices sont orthogonales. Aucune de ces matrices n’est symétrique, donc aucune
ne représente une symétrie.

On détermine d’abord si I’endomorphisme associé est direct ou indirect, pour cela on peut
calculer le déterminant ou bien, pour les matrices 3 x 3, déterminer si C; A Cy = C3 (auquel
cas l'isométrie est directe) ou bien si C; A Cy = —C3 (auquel cas I'isométrie est indirecte).

On détermine ensuite ’axe de cette transformation en cherchant ’espace propre associé a la
valeur propre 1 pour les rotations et —1 pour les anti-rotations.

Enfin on détermine I'angle de cette transformation soit en exploitant la trace et un produit
mixte, soit en déterminant une base orthonormée directe adaptée aux éléments géométriques
de la transformation.

det(A) = 1. A est donc la matrice d’une rotation.

L’axe de cette rotation est Ker(A — I5). L’axe est donc Vect((1,—1,0)).

On oriente axe a Paide du vecteur 7 = (1,-1,0), ce qui oriente le plan de la rotation.

1 1
Soit # 'angle de la rotation. On a alors : Tr(A) = 1+2cos(f) = 3’ d’out § = £ arccos <3>

1
Le vecteur v = (0,0, 1) appartient & Vect(ﬁ)Let est de norme 1, le produit mixte [7, o, f(?)-‘

V2

vaut alors sin(6)

1 0 -2
2 3
o \—[1 —2/ V8
Onaainsisin(f)=|—= 0 —|=-—>0
V2 515 3
o 1 =
3

1
L’angle de la rotation est donc 8 = arccos (—3).

det(B) = 1. B est donc la matrice d’une rotation.

L’axe de cette rotation est Ker(B — I3). L’axe est donc Vect((1,1,1)).

On oriente I'axe & laide du vecteur @ = (1,1,1), ce qui oriente le plan de la rotation.

Le vecteur ¥ = (1,—1,0) appartient & Vect(W)- et ona @ = ¥ A ¥ = (1,1,—2). La
. A

famille

—, ——, —= | est une base orthonormée directe et, en notant f ’endomorphisme
V3 V2 V6 ’

canoniquement associé a B et 6 ’angle de la rotation, on a

o v W
f <\/§) = co&(@)ﬁ + sm(@)%

Ainsi, par expression des coordonnées dans une base orthonormée directe, on a
?) o ) L
v2) v2ho2
D4 ) W

\/i ’

cos(0) = (f (

V3

i) = (7 (75 ) 20 =5

L’angle de la rotation est donc 6 = —g.
det(C) = —1. C est donc la matrice d’une anti-rotation.

L’axe de cette anti-rotation est Ker(C + I3). L’axe est donc Vect((1,—1,1)).

On oriente I'axe A laide du vecteur o = (1,—1,1), ce qui oriente le plan de I'anti-rotation.

— Meéthode

Vous pouvez choisir
la méthode de déter-
mination de I’angle
que vous préférez,
les deux méthodes
seront indifférem-
ment utilisées par la
suite.

— Produit mixte

Le produit mixte
est invariant par
changement de
base orthonormée
directe. La base
1

(77, .7 A 7)

V2

est orthonormée di-
recte et, en calculant
le produit mixte
dans cette base, on a

1
|57
1 0 0
0 1 cos().

0 0 sin(0)
Airllsi

|5 7] =
sin(0)
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1
Soit # Pangle de I'anti-rotation. On a alors : Tr(C') = —1+2cos(#) = 0, d’ott § = + arccos <2> =
+Z
3
Le vecteur ¥ = (1,1,0) appartient & Vect(%)™", on a alors

[ 7’f(7)}_ V3

n0) = | 7275/ (75)] =%

2

L’angle de I'anti-rotation est donc 6 = —%.
— det(D) =1, D est donc la matrice d’une rotation.
L’axe de cette rotation est Ker(D — I3). L’axe est donc Vect((0,1,1)).

On oriente I'axe & laide du vecteur o = (0,1, 1), ce qui oriente le plan de la rotation.

1
Soit 6 I’angle de la rotation. On a alors : Tr(D) = 1+2cos(f) = 0, d’ott § = £ arccos (—2> =

2
+—.
3

1

Le vecteur ¥ = (1,0,0) appartient & Vect(ﬁ)J‘ et est de norme 1, le produit mixte |

vaut alors sin(6)

o

On a ainsi sin(6) =

V3
2

< =I5l

_
S-Sl e
(e

4

2
L’angle de la rotation est donc 8 = %
— det(E) = —1. E est donc la matrice d’une anti-rotation.
L’axe de cette anti-rotation est Ker(E + I3). L’axe est donc Vect((1,0,1)).

On oriente 'axe a laide du vecteur ¥ = (1,0,1), ce qui oriente le plan de 'anti-rotation.
5
Soit # l’angle de Panti-rotation. On a alors : Tr(E) = —1 + 2cos(f) = —3 d’ot 6 =
" -1
arccos | — |.
3
Le vecteur v = (0,1,0) appartient a Vect(ﬁ)l‘7 on a alors

o

snit) = [ 22,71 ()] = 22

-1
L’angle de ’anti-rotation est donc 6 = arccos (3)

7
— det(F') = —1, F est donc la matrice d’une réflexion d’angle arccos ( 5 4)

Corrigé de I’exercice 2

1. On pose 7= 1 2,2). On a alors Vect(?)L = {(z,y,2) € R®, x4 2y + 22 = 0}.
1
Le vecteur 7 = §(2, —2, 1) appartient & Vect(?)L puis on prend E=TAT= 5(2, 1,-2).

La base (?, 7, ?) est orthonormée directe et dans cette base, la matrice de ’endomorphisme

1 0 0
est D=0 —-1 0
0 0 -1
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1 2 2
1
On note P la matrice de passage de la base B a la base (7, 7, 7()), ie. P= 3 2 -2 1
2 1 =2

La matrice cherchée est

1
M:PDP*:PDPT:§ 4 -1 8

1
V3
Le vecteur 7 =
1
V6

La base (?, 7, Rz) est orthonormée directe et dans cette base, la matrice de ’endomorphisme

2. On pose 7= (1,1,1). On a alors Vect(?)J‘ ={(z,y,2) ER®, x +y+2 =0}

1

—(1,—1,0) appartient a Vect ? L puis on prend f() = ? A 7 =
V2

(1,1,-2).

1 0 0 1 0 0
est D— | 0 cos (g) —sin (E) _lo % _?
0 sin (g) cos (7?5 0 ? %

La matrice cherchée est

1
M=PDP—1=PDPT=g 2 2 -1

Corrigé de I’exercice 3

1. Une matrice réelle a la fois symétrique et orthogonale est la matrice d’une symétrie orthogo-
nale.

2. La matrice A est symétrique réelle et ses colonnes sont de norme 1 et deux a deux orthogo-
nales. A est donc la matrice d'une symétrie orthogonale.

Ses éléments caractéristiques sont Ker(A — I3) et Ker(A + I3).
Ker(A — I3) est le plan d’équation —3z + 2y — z = 0.
On en déduit que Ker(A + I3) = (Ker(A — I3))* = Vect((—3,2, —1)).

A est donc la matrice de la symétrie orthogonale par rapport au plan d’équation d’équation
—3r+2y—2z=0.

Corrigé de l’exercice 4

1. La matrice de f est symétrique réelle donc diagonalisable dans une base orthonormée.

2. Les colonnes de A sont de norme 1 et deux a deux orthogonales. La matrice de f dans la
base canonique (qui est orthonormée) est orthogonale donc f est une isométrie.

f est une symétrie orthogonale donc ses seules valeurs propres possibles sont 1 et —1.

3. Soit p = dim(Ker(f —Id)). f est diagonalisable avec comme seules valeurs propres 1 et —1
ainsi 4 = dim(Ker(f — Id)) 4+ dim(Ker(f + Id)). On a ainsi dim(Ker(f +1d)) = 4 — p.

Alors Tr(A) =px 1+ (4—p) x (=1)=2p—4. Or Tr(A) =2, dou p = 3.
Ainsi 1 est une valeur propre de multiplicité 3 et —1 de multiplicité 1.
On en déduit que x;(X) = (X — 1)*(X +1).

7 Bastien Marmeth
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4. Ej est le plan d’équation 2z +y — 2+t = 0.
((1,-2,0,0),(0,0,1,1),(0,1,1,0)) en est une base. En lui appliquant le procédé d’orthonor-

1 1
—v9, ——(4,2,5,—5) | est une base
e (4,25,9))

5. f est diagonalisable et admet comme seules valeurs propres 1 et —1.

1
malisation de Gram-Schmidt on en déduit que <\/5v1,
orthonormée de FE;.

Ei et E_; sont donc supplémentaires dans R?.

Soit x € Ey et y € E_1. (f(x), f(y)) = (x,y) car f est une isométrie.

Or (f(x), f(y)) = (x,—y) = —(z,y). Donc (x,y) = —(x,y), d’'o = et y sont orthogonaux.
Donc F; et E_; sont orthogonaux.

Ainsi B_; = (Bp)*.

De plus (z,y,2,t) € By & 2x+y — 2+t =0. Posons u = (2,1, —1,1).

Alors v = (z,y, 2,t) € By < (u,v) = 0. Ainsi E_; = (E;)* = Vect(u).

1 1 1
6. La famille (vl, —(4,2,5,-5), —=(2,1, -1, 1)> obtenue en concaténant des bases

1
v,
VB V2 V0 V7
orthonormées de E; et E_; est une base orthonormée de R* dans laquelle la matrice de f
est diagonale.

f est la symétrie orthogonale par rapport & FEj.

Corrigé de ’exercice 5
Quel que soit (a,b,c) € R3, f est un endomorphisme de R3.

Soit ? et 7 deux vecteurs de R tels que (W, ?, 7) soit une base orthonormée directe.

Alors
F@)=(a+ 0@,  f(T)=al +c¢d, f(J)=af —cT

W est ainsi un vecteur propre de f et Wt = Vect(?, 7) est un plan stable par f.

a+b 0 O
La matrice de f dans la base (0, ?, 7) est alors 0 a —c
0 c a

f est une rotation si et seulement si cette matrice précédente est celle d’une rotation.

— Si f est une rotation, alors a + b est une valeur propre de f et det(f) = (a+b)(a® +c*) > 0.
Donca+b=1et W dirige ’axe de la rotation.

La restriction de f a W est alors une rotation plane donc il existe 0 tel que a = cos(f) et
¢ =sin(#), d’ou b =1 — cos(h).

— Réciproquement, s'il existe 0 tel que a = cos(f) et ¢ = sin(f) et b = 1 — cos(f), la matrice
trouvée est celle d’une rotation. Donc f est une rotation.

Finalement f est une rotation si et seulement s’il existe 6 tel que a = cos(#) et ¢ = sin(f) et
b=1-—cos(d).

Corrigé de I’exercice 6

Soit A une matrice orthogonale de M,,(R). Soit f 'endomorphisme canoniquement associé a A, f
est une isométrie.

Soit W = (1,1,..,1) et U le vecteur colonne associé & u dans la base canonique. Soit (.,.) le
produit scalaire canonique de R"™.

On a alors ZZ@M =UTAU = (u, f(u)).

i
Par l'inégalité de Cauchy-Schwarz (u, f(u)) < ||u|||lf(w)||
Or || f(u)| = |lull, car f est une isométrie et |u = v/n.

D’ou E E Qq, 5 <n.
g
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Corrigé de ’exercice 7
Soit x et y deux vecteurs unitaires, on a alors
<$+y,m—y> = <$,$—y> +<y,x—y>
= (z,2) + (y,2) — (,9) — (v, )

= [|lz[1* = [lyl>
=1-1
=0

On a donc
Yy e B all=lyl=1 = (flz+y),flz—y)=0
C’est-a-dire
V(z,y) € B2, lzll=lyll=1 = (f(2) + f(v), f(x) = f(y)) =0
ou encore, en développant les produit scalaire

V(ey) € B2, lzll=lyll=1 = [f(@)] = If W)

Soit e un vecteur unitaire de E et A = || f(e)|| = 0. Soit v € E non-nul, on a alors

)

[l
ainsi, d’apres la propriété précédente

Hf (IIZH)H = |f(e)ll =

()| = oo s

[l

Or

Ve e EN{0},  [If(@)] = All=|
Cette relation est clairement aussi vraie pour x = 0 ainsi

Vee B, [f(@)] = Al

Corrigé de ’exercice 8

On travaille par double implication :
— Supposons que f2 = —Idg
Alors
(z, f(2)) = =(f*(2), f(x)) car f? = —1dg

=—(f(z),z) car f est une isométrie
Ainsi (z, f(z)) = 0.
— Supposons que, pour tout z € E, (z, f(z)) =0
Soit (z,y) € E?, alors on a

Ainsi, pour tout couple (z,y) € E?, on a (f(z),y + f*(y)) = 0, ainsi, pour tout y € E,
y+ f*(y) € Im(f)*
f est une isométrie et donc Im(f) = E, ainsi pour tout y € E, y+ f*(y) =0, i.e. f2 = —1Idg.

9 Bastien Marmeth
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On a montré les deux implications, on a donc bien

fP=-Idg <= [Vze€E, (z, f(z)) =0]

Corrigé de I’exercice 9

1. Soit X € .4, 1(R). Alors on a ||PX|| = (PX) ' PX =X'PX'PX =X'X = | X|>
’ ——

=I,
Et puisqu’une norme est toujours positive, on en déduit que ||PX|| = || X]||.
2. Soient X et Y € 4, 1(R). Nous savons que C’est I'identité de
' polarisation
IP(X +Y)|I” = ||PX|* +2(PX, PY) + | PY|* = | X||* + 2{PX, PY) + [[Y]|*.
D’autre part, on a également
IX + Y = [ XII* +2(X,Y) + [[Y]?

et donc |[P(X +Y)||* = | X +Y|? = (PX,PY) = (X,Y).
En particulier, si (X1, ..., X,) sont les vecteurs de la base canonique de .#, 1(R), alors pour

0 siiti 0 siiti
tous (i,4) € [1,n]?, (X, X;) = b% 17 et donc (PX;, PX;) = b% ! 7&].

1 sinon 1 sinon
Autrement dit (PX1, ..., PX,) est une famille orthonormée de .#,, 1 (R), de cardinal n, donc
c’est une base orthonormée B de ., 1(R). Toute famille

Et alors P est la matrice de passage de B a la base canonique : elle est alors orthogonale car ~ °rthonormée est libre.

matrice de passage entre deux bases orthonormées.

Autre méthode : montrons que A = PT P — I,, est la matrice nulle, ce qui prouvera que
P'P=1,.

Pour tout X,Y € #, (R),ona X'AY = X"PTPY - XY = (PX, PY) — (PX, PY).
En particulier, pour X = AY, il vient (AY)TAY =0 & ||AY|> = 0.

Et donc, pour tout Y € 4, 1(R), [|[AY || =0=VY € #,1(R), AY =0.

Or, comme AX = 0 pour tout X € M, 1(R), alors A =0 et donc P est orthogonale.

Corrigé de ’exercice 10

1. On a
A+ 4+ bet+ac+ab be+ ac+ ab s2— 20 o o
MMT"T = |bc+ac+ab a®>+b>+c be+tac+ab| = o s — 20 o
be+ac+ab bet+ac+ab a®+b%+ 2 o o s — 20

Ainsi MM T = I si et seulement si o = 0 et s% = 1.

On a donc bien M € O3(R) si et seulement si 0 =0 et s € {—1,1}.

10 Bastien Marmeth
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2. On a de plus

a b c
det(M)=|c a b
b ¢ a
a+b+c b ¢
=lcta+b a b
b+c+a ¢ a
1 b ¢
=(a+b+c)|l a b
1 ¢ a
1 0 0
=(a+b+c¢)|l a-b b—c
1 ¢—b a—-c
=(a+b+c)((a—0d)(a—c)—(c=b)(b—0))

=(a+b+c)(a®+b*+c® —ab—ac— be)

= s5(s* — 30)

Ainsi, si 0 = 0 et s> = 1 alors det(M) = s et donc M € SO3(R) si et seulement si ¢ = 0 et
s=1
3.0na
(X —a)(X —b)(X —¢) = X3~ sX? +0X — abc

27
Alors X3 — X? 4+ k= (X —a)(X —b)(X —¢).
Par unicité de 1’écriture développée d’'un polyndéme on a donc s = 1 et ¢ = 0, d’olt
M e SOS(R)
— Réciproquement, supposons que M € SO3(R), alors a, b et ¢ sont les racines de (X —
a)(X —b)(X —c) = X - X? — abe.

4
— Supposons qu’il existe k € {0, ] tel que a, b et ¢ sont les racines de X — X2 + k.

4
Il ne reste plus qu’a montrer que —abc € {0, 27] . On va pour cela exploiter le fait que
a, b et ¢ sont des réels

Considérons la fonction f : t — t> — t* + k avec k réel et cherchons & quelle condition
cette fonction s’annule exactement trois fois sur R.

Pour t € R, on a f/(t) = 3t> — 2t = (3t — 2), on en déduit le tableau de variations

suivant
2
t —00 0 - +o00
3
() + 0 - 0 +

(0.9]

. /k\k_4/+

Pour que f s’annule exactement trois fois sur R il faut et il suffit que k > 0 et k— o7 <0,
4
i.e. k € {0, 27]

4 4
C’est le cas ici, on a donc —abc € [O, 27} Ainsi il existe bien k € [O, 27] tel que a, b

et ¢ sont les racines de X — X2 + k.
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Corrigé de ’exercice 11

Les matrices A et B sont symétriques réelles donc diagonalisables en base orthonormée.

a b b
A=1b a b
b b a
On a alors
X—a —b —b
xa=| b X-—-a —b
—b -b X-a
X—a—-2b D —b
= X-a—-2b X —a —b
X—a—-2b -b X-a
1 —b —b
=X-a—-2b)|1 X—-a —b
1 b X-a
1 0 0
=X-a—-2b)|]1 X—a+b 0
1 0 X—a+d
=(X—a—2b)(X —a+0b)?
1
1| est vecteur propre associé a la valeur propre a + 2b. Le sous-espace propre associé a la
1
x
valeur propre a — b est le plan y| EMsi(R), z+y+2=0
z
7o) 7oL (L) aroTa7o L
Soit [ =— (1|, J=—[|-1]letK=1IANJ=—|1
V3 4 V2 \ V6 \

Soit P la matrice de passage de la base canonique a (?, 7, RZ), ie. P=

a+2b 0 0
et D= 0 a—>b 0
0 0 a—>b

On a alors A = PDPT.

La matrice B est simplement le cas particulier ot @ = 0 et b = 1, ainsi B = PDP', ou

V2 V31 2 0 0

1
P=—|V2 V3 1 |etD=[0 -1 0
Vil 0 0 0 -1
Corrigé de I’exercice 12
1. On a (ATA)—r = AT(AT)—r = AT A. La matrice A" A est donc symétrique réelle.

Elle est ainsi diagonalisable en base orthonormée.

Soit A une valeur propre de AT A et X un vecteur propre associé. On note (s, ) le produit
scalaire canonique sur M,,(R).
Onaalors [X[?=X"Xet XTATAX = X" A\X = \X"X.
_lAx]?
X2

Or X TATAX = (AX)" AX = ||AX|)®. Donc A

Notons A1, -+, A, les valeurs propres de AT A, qui sont toutes réelles positives.

— Espaces propres

Les espaces propres
d’une matrice symé-
trique réelle sont
deux-a-deux or-
thogonaux. Ici on

a donc E,_p(A) =
Eaio(A)T.

12
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A O 0

Il existe une matrice P orthogonale telle que AT A = PDP~! avec D = 0
0
0 0 A\

VA0 - 0
Posons D' = 0 . . :

0 e 0 VA
OnaD=D? donc ATA=PD?P ' =PD'P'PD'P! = R? avec R= PD'P L.
De plus B = (PD'P~Y) =P "'D'"PT = PD'"'PT = PD'P~' =R (ona TP = P~
car P est orthogonale).

Donc R est symétrique.

Ainsi, il existe une matrice symétrique R telle que R? = TAA.
2. On suppose A inversible. On a alors det(TAA) = det(A)det(AT) = det(A)? > 0.

Or TAA = R?, donc det(R)? = det(A)? > 0. Donc det(R) # 0. La matrice R trouvée en 1.
est ainsi inversible.

3. On va procéder par analyse-synthese :
Analyse :

Soit A € GL,(R). On suppose qu’il existe une matrice symétrique S et une matrice Q €
O, (R) telles que A = QS.

Onaalors AT =8TQT =5QT, dont ATA =52
Synthese

Soit A inversible, d’apres les questions 1. et 2. il existe une matrice S symétrique, inversible
telle que ATA = §2.

S est inversible. Posons Q = AS~!. On a alors
QTQ=(S"H"ATAS = (ST)"1825 1 = 571§ =1,

Ainsi @ est orthogonale.

Finalement, si A est inversible, il existe une matrice symétrique S et une matrice Q € O, (R)
telles que A = @S.

Corrigé de I’exercice 13

1. Soit z € F, on a
1f @)l = [If (@) = fFO) = ll= = Ol = [l]

2. Soit (z,y) € E?, on a alors, d’apres les identités de polarisation

@) = f@I2 = 1 @17 = 1 W)l?

(f(2), f(y)) =

2
_ e =yl ==l — llyl®
2
= (z,y)

3. D’apres la question 1. on a, pour (¢,7) € [1,n], ||f(e;)| = |les|| = 1 et d’apreés la question 2.,
(f(ei), f(e;)) = (ei,ej) = &; ;. Ainsi la famille (f(e1), -+, f(en)) est une base orthonormée
de E.

4. Soit x € F, on a alors

13 Bastien Marmeth
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n
Ainsi f est application z Z(x, e;) f(e;) qui est linéaire par linéarité a gauche du produit
i=1

scalaire.

5. On a montré que, si est f une application de E dans E telle que f(0) = 0 et, pour tout
(z,y) € E* |f(x) — f()|| = ||z — y|| alors f est linéaire et vérifie que pour tout z € E
If (@)|| = ||z||, f est donc une isométrie.

Corrigé de ’exercice 14

1. On a
M3=MM?*’=M*>-M=M—-1,—-M=—1I,

Ainsi det(M)? = det(M?) = det(—I4) = (=1)* = 1. D’olt det(M) = 1, f est ainsi une
isométrie positive.

2. Soit \ une valeur propre complexe de M et X un vecteur propre associé. On a alors M2X =
NX et M?X =(M—-1,)X=MX - X =(\A—-1)X.

Puisque X # 04,1 on a ainsi N =X—1dou e {ei%,e_’%}.

— Multiplicité

Plus généralement
cet argument montre
que, si P est un po-
lynoéme & coefficients
réels et \ est une

P 4 Y. . . ine de P d 1-
Les valeurs propres complexes de f sont ainsi €'3 et e™*3 qui sont toutes les deux de multi- racine de ¢ mt
tiplicité m alors A

- .
La polynéme caractéristique de f est alors de la forme x; = (X — ezg)a (X — e_lg) avec
a et b deux entiers tels que a +b = 4. Or x est un polyndome & coefficients réels donc

xr=x5=(X —e_i%)a (X —ei%)b. On en déduit que a = b et donc a =b = 2.

V'

plicite 2. est également une
3. Soit X = X; + iXs un vecteur propre de M associé a la valeur propre A avec X; et Xo racine de P de mul-
vecteurs de R*. tiplicité m.

(a) Ona MX = AX, ie M(X;+iX2) = A(X1 +iX3). En passant au conjugué on obtient

MX = )X, c’est-a-dire M(X; —iX5) = A X —iX>).
Alors _ _
1 — A+ i\ — i
MX; = SM(X +X) = “22X; + 22X, € Veet(X;, Xs)
Et B _
1 - A=A A+ i
MXo = JM(X = X) = S5 5X + : ‘2” X, € Vect(X1, X5)

On a bien f(x1) € P et f(x2) € P. P est donc stable par f
(b) P est stable par f et f est une isométrie, ainsi P~ est stable par f.
(c) Pet P~ sont des espaces vectoriels stables par f.

Notons f; la restriction de f & P. fi est encore une isométrie et f2 = f; — Idp, ainsi
f2 = —1Idp et donc det(f1)® = (—1)? = 1.

f1 est ainsi une isométrie positive d’un espace de dimension 2, sa matrice dans n’importe

cos(0) —sin(@)) o 0 €R

quelle base orthonormée de P est alors de la forme Ry = (sin 6)  cos(8)

De méme f5 la restriction de f a Pt a pour matrice dans n’importe quelle base ortho-
cos(#) —sin(¢)
sin(¢)  cos(@) )

Ainsi, dans une base orthonormée adaptée & la somme directe orthogonale P & Pt la

matrice de f est de la forme L .
0 Ry

normée de P~ une matrice la forme Ry = (

On en déduit que le spectre de M est alors le spectre de la matrice (139 Ig )7 ie.
]
Sp(M) = {e? o7 o' o™i},
71'

Ainsi¢:9ou¢:—eet9€{g,—g}.
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Corrigé de I’exercice 15

1. On suppose que P et D sont orthogonaux, de plus dim(P) = 2 et dim(D) = 1, ainsi R? =
PoD.

Soit x € R3, il existe (zp,zp) € P x D tel que v = zp + zp.
D est stable par r donc, puisque r est une isométrie P = D+ est stable par r, on a ainsi
r(xp) =xzp et r(xp) € P.
On sait de plus que, si y € P alors s(y) = y et si y € P+ alors s(y) = —v.
Ainsi
sor(x) =s(r(zp)) + s(r(zp)) = s(zp) + r(xp) = —xp +r(zp)
Et
ros(z) =r(s(zp)) +r(s(zp)) =r(—zp)+r(xp) = —zp +r(xp)
On a donc bien r o 5(x) = s o r(x), ce pour tout z € R*, d’ott 7o s = s07.
2. On suppose que ro s = sor.
Soit v un vecteur directeur de P~, on a alors s(v) = —v.
Ainsi 7o s(v) = r(—v) = —r(v) = sor(v). On en déduit que r(u) € E_1(s).
Si s n’est pas —Idgs alors Ey(s) = Vect(v) et donc r(v) € Vect(v).
Puisque s est une isométrie on a alors ||r(v)|| = ||v]|, ainsi r(v) = +v

— Si 7(v) = v alors v dirige D et on a donc D = P+

— si r(v) = —v alors —1 € Sp(r). r est alors une rotation d’angle 7, i.e. une symétrie
orthogonale d’axe D. On a alors Pt ¢ D+, d’ou D C P.

Réciproquement supposons que r est une symétrie orthogonale d’axe D, s une symétrie
orthogonale d’axe P avec D C D. Soit u un vecteur directeur unitaire de D, v tel que
(u,v) soit une base orthonormée de P et w un vecteur directeur unitaire de P~. Alors,
si on note B = (u,v,w) on a

—= O
jen)

Matg(r) = et Matg(s) =

O O =
|
—t
(an)
OO =

0-1
Il est alors aisé de prouver que r et s commutent.

Finalement on a D = P* ou bien 7 est une symétrie orthogonale d’axe D avec D C P.

Corrigé de I’exercice 16

1. Ona AAT =I5, A est donc une matrice orthogonale.

2. A est une matrice orthogonale donc ses valeurs propres sont toutes de module 1, en particulier
ses seules valeurs propres réelles possibles sont 1 et —1.

On a det(A) = 1, A est donc la matrice d’une rotation.
L’axe de cette rotation est Ker(A — I5). L’axe est donc Vect((2,0,1)).

On oriente I'axe a l'aide du vecteur ¥ = (2,0,1), ce qui oriente le plan de la rotation.

11 2
Soit 6 l’angle de la rotation. On a alors : Tr(A) = 1+ 2cos(f) = = d’olt § = =+ arccos <7>

1
Le vecteur ¥ = (0, 1,0) appartient & Vect( )" et est de norme 1, le produit mixte [\/57, v, f(?)]

vaut alors sin(6)

-3v5

<0
7

On a ainsi sin(f) =

— [\)
Sl e Sl
—
|
\I‘Q\I\I\J\I\w
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2
L’angle de la rotation est donc # = — arccos <7)

Corrigé de ’exercice 17

1. R est la matrice d’une rotation si et seulement si I'image de la base canonique de M3 1 (R)

2 2
¢ 3 3
est une base orthonormée directe de M3 1(R), i.e. si et seulement (b | = — | A | =
c 3 $
3 3
Ainsi R est la matrice d’une rotation si et seulement si a =1, b= -2 et ¢ = 2.

2. On reprend la méthode des exercices 1 et 16., on obtient que R est la matrice de la rotation
d’axe dirigé et orienté par U = (1,1,-1) et d’angle 6 = g
3. Notons r la rotation associé a R dans la base canonique. Le plan d’équation z + 2y — 2z =0
est dirigé par @ = (1,0,1) et T = (0,1,2). Son image est alors Vect(r(?)m(?)).
— 4 25
Or (@)= (1,-1,0) et (b ) = (3,—3, 3).
Ainsi 'image du plan d’équation = + 2y — z = 0 par r est le plan Vect((1,—1,0), (4, —2,5)).

Par ailleurs Vect((1, —1,0), (4, —2,5)* = Vect (5,5, 2), ainsi le plan Vect((1, —1,0), (4, —2,5))
est le plan d’équation 5x + 5y + 2z = 0.

Corrigé de ’exercice 18

0 0 0 1
1 0 0
0
1. (a) Ona A=
: . N
0 -« -~ 0 1 0
(b) u envoie la base orthonormée B = (eq, - ,e,) sur la famille (e, -+ ,e,,e1) qui est

également une base orthonormée. Ainsi u est une isométrie.

(c) Puisque u est une isométrie, elle est inversible. De plus, comme B est orthonormée, A
est une matrice orthogonale, d’ot

Matg(ufl) =A1=4A"T
Ainsi u™! est Papplication linéaire définie par

Vie[2,n], ule;)=ei—1 et wuler) =ey,
Enfin on a det(u) = det(A) = (=1)""'det(I,_1) = (—1)"*! par développement par
rapport a la derniere colonne.

2ik 2
2. On pose, pour k € [0,n — 1], wr = exp (Z) et Uy = | Yk
n

(a) Remarquons que les complexes wy sont les racines n de l'unité et qu’a ce titre on a
wp = 1.
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On a alors
1
Wi
wp! Wk
1 w§
w 1
AUy =| @0 [ =] =2 | = —Up =wn sl
. Wik Wik
n—2
wy, .
Wi
Wk

Ainsi Uy est un vecteur propre de A pour la valeur propre w,_j.

(b) De la question précédente on en déduit que {wy,—x , k € [0,n — 1]} C Sp(A4).
Clest-a-dire {1, wg, - -+ ,wr—1} C Sp(A). Comme A est une matrice de taille n elle admet
au maximum n valeurs propres. Ainsi Sp(4) = {1, w1, - ,wn_1}.

A est alors une matrice carrée de taille n qui admet n valeurs propres distinctes, elle est
donc diagonalisable.

De plus
n—1
xa=J[(X—wp)=Xx"
k=0
3. Considérons que la base B est directe.
0 0 1
Pourn=3onaA=(1 0 0
010
D’apres la question 1.(c), det(A) = 1, A est donc une isométrie positive donc une rotation.

Te(4) -1 _ 1
De pl 0 -
e plus cos(f) = ) 5
1 1
1 1
SoitU=—|1]etV=—]-1
V3 4 2\ o

1 1 0
1
1 0 -1

Ainsi, u est la rotation d’axe dirigé et orienté par le vecteur de coordonnées (1, 1,1) et d’angle
21

?.
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